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The Riemann Zeta Function

Definition

The Riemann Zeta function ζ(s) is defined for complex
inputs s as

ζ(s) =
∞∑
n=1

1

ns
.
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The Hurwitz Zeta Function

The Hurwitz Zeta function generalizes the Riemann Zeta.

Definition

The Hurwitz Zeta function ζ(s, a) is defined for complex
inputs s and a with Re(a) > 0 and Re(s) > 1 as follows:

ζ(s, a) =
∞∑
n=0

1

(n + a)s
.

Definition

Compare this to the definition of the Riemann zeta function:

ζ(s) =
∞∑
n=1

1

ns
.
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The Hurwitz Zeta Function

The Hurwitz zeta function can be analytically continued to
almost all complex arguments Re(s) ≤ 1 as follows:

Theorem

ζ(s, q) = Γ(1− s)
1

2πi

∫
C

z s−1eqz

1− ez
dz .
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The Hurwitz Zeta Function

Figure: A graph of the Hurwitz zeta function as a function of a
with s = 3 + 4i .
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The Hurwitz Zeta Function

Recall the definition of the Hurwitz Zeta funtion:

Definition

The Hurwitz Zeta function ζ(s, a) is defined for complex
inputs s and a with Re(a) > 0 and Re(s) > 1 as follows:

ζ(s, a) =
∞∑
n=0

1

(n + a)s
.

Query

How can we approximate the Hurwitz Zeta function for any
satisfactory inputs s and a to arbitrary precision?

Andy Xu Mentor: Hyun Jong Kim Approximating the Hurwitz Zeta Function



The Hurwitz Zeta Function
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Background

Definition

The Lerch Transcendent Φ(s, a, z) is defined for complex
inputs s,a,z as

Φ(s, a, z) =
∞∑
n=1

zn

(n + a)s
.

Definition

Once again, recall that the Hurwitz Zeta function ζ(s, a) is
defined as

ζ(s, a) =
∞∑
n=0

1

(n + a)s
.
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Background

Definition
1 The gamma function Γ(s) is defined by the integral

Γ(s) =

∫ ∞
0

ts−1e−tdt

2 The upper incomplete gamma function Γ(s, z) is
defined by the integral

Γ(s, z) =

∫ ∞
z

ts−1e−tdt

The incomplete gamma function generalizes the gamma
function.
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Alternate Series for the Hurwitz Zeta Function

Theorem (Bailey–Borwein, 2015)

Let λ be a parameter with 0 < λ < 2π. Define σ(x) to be the
sign function. Then for real a and complex s with 0 < a < 1
and Re(s) > 1, we have

ζ(s, a) =

√
πλ

s−1
2

(s − 1)Γ
(
s
2

)
+

1

2

∞∑
n=−∞

1

|n + a|s

(
Γ( s

2
, λ(n + a)2)

Γ( s
2

)
+ σ(n + a)

Γ( s+1
2
, λ(n + a)2)

Γ( s+1
2

)

)

+ πs− 1
2

∞∑
m=1

1

m1−s

Γ( 1−s
2
, m

2π2

λ
)

Γ( s
2

)
cos (2πma) +

Γ(1− s
2
, m

2π2

λ
)

Γ( s+1
2

)
sin (2πma)

 .
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Our Research
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Difficulties in Approximating the Hurwitz Zeta

Function

Large Imaginary Parts

Set a = em+pi , where 0 ≤ p < 2π, for brevity. Consider just
the first term in our summation, 1

as
.

∣∣∣∣ 1

as

∣∣∣∣ =
ep·Im(s)

|a|Re(s)
.

Thus, when |a|Re(s) � 1 or p · Im(s)� 1, 1
as

may grow very
large in magnitude.
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Analyzing Convergence

Theorem

When a > 0 and N some (presumably large) positive integer,∣∣∣∣∣
∞∑

n=N+1

(n + a)−s

∣∣∣∣∣ < N1−Re(s)

Re(s)− 1
.

Idea

For real s, the series
∞∑

n=N

1
ns

converges if and only if s > 1.

Corollary

To achieve k digits of precision in ζ(s, a), we need O(10
k

Re(s)−1 )
terms as k →∞.
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Analyzing Convergence

Theorem

For real s and a with s > 1 and a > 0, and integer n so that
|n + a| ≥ s

2
and |n + a| ≥ 10,

Γ
( s

2
, π(n + a)2

)
< 10−(n+a)2

.

Corollary

For any given ordered pair (s, a), we need O(
√
k) terms to

obtain k digits of precision in ζ(s, a)
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Future Research

Analyze the performance of other series

Expand the scope of our analyses to complex s and/or a.

Optimize Implementation
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