Approximating the Hurwitz Zeta Function

Andy Xu
Mentor: Hyun Jong Kim

May 20, 2018
Presentation

The Riemann Zeta Function

Definition

The Riemann Zeta function $\zeta(s)$ is defined for complex inputs s as

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

The Hurwitz Zeta Function

The Hurwitz Zeta function generalizes the Riemann Zeta.

The Hurwitz Zeta Function

The Hurwitz Zeta function generalizes the Riemann Zeta.

Definition

The Hurwitz Zeta function $\zeta(s, a)$ is defined for complex inputs s and a with $\operatorname{Re}(a)>0$ and $\operatorname{Re}(s)>1$ as follows:

$$
\zeta(s, a)=\sum_{n=0}^{\infty} \frac{1}{(n+a)^{s}} .
$$

The Hurwitz Zeta Function

The Hurwitz Zeta function generalizes the Riemann Zeta.

Definition

The Hurwitz Zeta function $\zeta(s, a)$ is defined for complex inputs s and a with $\operatorname{Re}(a)>0$ and $\operatorname{Re}(s)>1$ as follows:

$$
\zeta(s, a)=\sum_{n=0}^{\infty} \frac{1}{(n+a)^{5}} .
$$

Definition

Compare this to the definition of the Riemann zeta function:

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} .
$$

The Hurwitz Zeta Function

The Hurwitz zeta function can be analytically continued to almost all complex arguments $\operatorname{Re}(s) \leq 1$ as follows:

The Hurwitz Zeta Function

The Hurwitz zeta function can be analytically continued to almost all complex arguments $\operatorname{Re}(s) \leq 1$ as follows:

Theorem

$$
\zeta(s, q)=\Gamma(1-s) \frac{1}{2 \pi i} \int_{C} \frac{z^{s-1} e^{q z}}{1-e^{z}} d z .
$$

The Hurwitz Zeta Function

Figure: A graph of the Hurwitz zeta function as a function of a with $s=3+4 i$.

The Hurwitz Zeta Function

Recall the definition of the Hurwitz Zeta funtion:
Definition
The Hurwitz Zeta function $\zeta(s, a)$ is defined for complex inputs s and a with $\operatorname{Re}(a)>0$ and $\operatorname{Re}(s)>1$ as follows:

$$
\zeta(s, a)=\sum_{n=0}^{\infty} \frac{1}{(n+a)^{s}}
$$

The Hurwitz Zeta Function

Recall the definition of the Hurwitz Zeta funtion:

Definition

The Hurwitz Zeta function $\zeta(s, a)$ is defined for complex inputs s and a with $\operatorname{Re}(a)>0$ and $\operatorname{Re}(s)>1$ as follows:

$$
\zeta(s, a)=\sum_{n=0}^{\infty} \frac{1}{(n+a)^{s}}
$$

Query

How can we approximate the Hurwitz Zeta function for any satisfactory inputs s and a to arbitrary precision?

Background

Definition

The Lerch Transcendent $\Phi(s, a, z)$ is defined for complex inputs s, a, z as

$$
\Phi(s, a, z)=\sum_{n=1}^{\infty} \frac{z^{n}}{(n+a)^{s}}
$$

Background

Definition

The Lerch Transcendent $\Phi(s, a, z)$ is defined for complex inputs s, a, z as

$$
\Phi(s, a, z)=\sum_{n=1}^{\infty} \frac{z^{n}}{(n+a)^{s}} .
$$

Definition

Once again, recall that the Hurwitz Zeta function $\zeta(s, a)$ is defined as

$$
\zeta(s, a)=\sum_{n=0}^{\infty} \frac{1}{(n+a)^{5}} .
$$

Background

Definition

(1) The gamma function $\Gamma(s)$ is defined by the integral

$$
\Gamma(s)=\int_{0}^{\infty} t^{s-1} e^{-t} d t
$$

(2) The upper incomplete gamma function $\Gamma(s, z)$ is defined by the integral

$$
\Gamma(s, z)=\int_{z}^{\infty} t^{s-1} e^{-t} d t
$$

The incomplete gamma function generalizes the gamma function.

Alternate Series for the Hurwitz Zeta Function

Theorem (Bailey-Borwein, 2015)

Let λ be a parameter with $0<\lambda<2 \pi$. Define $\sigma(x)$ to be the sign function. Then for real a and complex s with $0<a<1$ and $R e(s)>1$, we have

$$
\begin{aligned}
\zeta(s, a) & =\frac{\sqrt{\pi} \lambda}{\left(s-\frac{s-1}{2}\right.} \Gamma \\
& +\frac{1}{2} \sum_{n=-\infty}^{\infty} \frac{1}{|n+a|^{s}} \\
& \left.+\frac{\Gamma\left(\frac{s}{2}, \lambda(n+a)^{2}\right)}{\Gamma\left(\frac{s}{2}\right)}+\sigma(n+a) \frac{\Gamma\left(\frac{s+1,}{2}, \lambda(n+a)^{2}\right)}{\Gamma\left(\frac{s+1}{2}\right)}\right) \\
& +\pi^{s-\frac{1}{2}} \sum_{m=1}^{\infty} \frac{1}{m^{1}-s}\left(\frac{\Gamma\left(\frac{1-s}{2}, m^{2} \pi^{2}\right)}{\Gamma\left(\frac{s}{2}\right)} \cos (2 \pi m a)+\frac{\Gamma\left(1-\frac{s}{2} m^{2} \pi^{2}\right)}{\Gamma\left(\frac{s+1}{2}\right)} \sin (2 \pi m a)\right) .
\end{aligned}
$$

Our Research

Difficulties in Approximating the Hurwitz Zeta Function

Large Imaginary Parts

Set $a=e^{m+p i}$, where $0 \leq p<2 \pi$, for brevity. Consider just the first term in our summation, $\frac{1}{a^{s}}$.

$$
\left|\frac{1}{a^{s}}\right|=\frac{e^{p \cdot \operatorname{lm}(s)}}{|a|^{\operatorname{Re}(s)}}
$$

Thus, when $|a|^{\operatorname{Re}(s)} \ll 1$ or $p \cdot \operatorname{Im}(s) \gg 1, \frac{1}{a^{s}}$ may grow very large in magnitude.

Analyzing Convergence

Theorem
When a >0 and N some (presumably large) positive integer,

$$
\left|\sum_{n=N+1}^{\infty}(n+a)^{-s}\right|<\frac{N^{1-R e(s)}}{\operatorname{Re}(s)-1} .
$$

Analyzing Convergence

Theorem
When a >0 and N some (presumably large) positive integer,

$$
\left|\sum_{n=N+1}^{\infty}(n+a)^{-s}\right|<\frac{N^{1-R e(s)}}{\operatorname{Re}(s)-1} .
$$

Idea

For real s, the series $\sum_{n=N}^{\infty} \frac{1}{n^{s}}$ converges if and only if $s>1$.

Corollary

To achieve k digits of precision in $\zeta(s, a)$, we need $O\left(10^{\frac{k}{R e(s)-1}}\right)$ terms as $k \rightarrow \infty$.

Analyzing Convergence

Theorem
For real s and a with $s>1$ and $a>0$, and integer n so that $|n+a| \geq \frac{s}{2}$ and $|n+a| \geq 10$,

$$
\Gamma\left(\frac{s}{2}, \pi(n+a)^{2}\right)<10^{-(n+a)^{2}}
$$

Analyzing Convergence

Theorem
For real s and a with $s>1$ and $a>0$, and integer n so that $|n+a| \geq \frac{s}{2}$ and $|n+a| \geq 10$,

$$
\Gamma\left(\frac{s}{2}, \pi(n+a)^{2}\right)<10^{-(n+a)^{2}}
$$

Corollary

For any given ordered pair (s, a), we need $O(\sqrt{k})$ terms to obtain k digits of precision in $\zeta(s, a)$

Future Research

- Analyze the performance of other series
- Expand the scope of our analyses to complex s and/or a.
- Optimize Implementation

Acknowledgements

I would like to sincerely thank

- My mentor, Hyun Jong Kim, for his invaluable guidance
- Stefan Wehmeier for recommending this project
- MathWorks for sponsoring this project and software
- The MIT PRIMES Program and staff for providing this research opportunity
- My family for their thorough assistance

References

嗇 Bailey，D．H．，Borwein，J．M．（2015）．Crandall＇s computation of the incomplete Gamma function and the Hurwitz zeta function，with applications to Dirichlet L－series．Applied Mathematics and Computation，268， 462－477．

雷 Crandall，R．（2012）．Unified algorithms for polylogarithm， L－series，and zeta variants．Algorithmic Reflections： Selected Works．PSIpress．

圊 Sondow，Jonathan and Weisstein，Eric W．＂Hurwitz Zeta Function．＂From MathWorld－A Wolfram Web Resource． http：／／mathworld．wolfram．com／HurwitzZetaFunction．html

